Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.26.21259239

ABSTRACT

Individuals with likely exposure to the highly infectious SARS-CoV-2 do not necessarily develop PCR or antibody positivity, suggesting some may clear sub-clinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-5. We hypothesised that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-26-12, would expand in vivo to mediate rapid viral control, potentially aborting infection. We studied T cells against the replication transcription complex (RTC) of SARS-CoV-2 since this is transcribed first in the viral life cycle13-15 and should be highly conserved. We measured SARS-CoV-2-reactive T cells in a cohort of intensively monitored healthcare workers (HCW) who remained repeatedly negative by PCR, antibody binding, and neutralisation for SARS-CoV-2 (exposed seronegative, ES). 16-weeks post-recruitment, ES had memory T cells that were stronger and more multispecific than an unexposed pre-pandemic cohort, and more frequently directed against the RTC than the structural protein-dominated responses seen post-detectable infection (matched concurrent cohort). The postulate that HCW with the strongest RTC-specific T cells had an abortive infection was supported by a low-level increase in IFI27 transcript, a robust early innate signature of SARS-CoV-2 infection16. We showed that the RNA-polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and was preferentially targeted by T cells from UK and Singapore pre-pandemic cohorts and from ES. RTC epitope-specific T cells capable of cross-recognising HCoV variants were identified in ES. Longitudinal samples from ES and an additional validation cohort, showed pre-existing RNA-polymerase-specific T cells expanded in vivo following SARS-CoV-2 exposure, becoming enriched in the memory response of those with abortive compared to overt infection. In summary, we provide evidence of abortive seronegative SARS-CoV-2 infection with expansion of cross-reactive RTC-specific T cells, highlighting these highly conserved proteins as targets for future vaccines against endemic and emerging Coronaviridae.


Subject(s)
COVID-19 , Abortion, Septic
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.18.21250044

ABSTRACT

We hypothesised that host-response biomarkers of viral infections may contribute to early identification of SARS-CoV-2 infected individuals, critical to breaking chains of transmission. We identified 20 candidate blood transcriptomic signatures of viral infection by systematic review and evaluated their ability to detect SARS-CoV-2 infection, compared to the gold-standard of virus PCR tests, among a prospective cohort of 400 hospital staff subjected to weekly testing when fit to attend work. The transcriptional signatures had limited overlap, but were mostly co-correlated as components of type 1 interferon responses. We reconstructed each signature score in blood RNA sequencing data from 41 individuals over sequential weeks spanning a first positive SARS-CoV-2 PCR, and after 6-month convalescence. A single blood transcript for IFI27 provided the highest accuracy for discriminating individuals at the time of their first positive viral PCR result from uninfected controls, with area under the receiver operating characteristic curve (AUROC) of 0.95 (95% confidence interval 0.91-0.99), sensitivity 0.84 (0.7-0.93) and specificity 0.95 (0.85-0.98) at a predefined test threshold. The test performed equally well in individuals with and without symptoms, correlated with viral load, and identified incident infections one week before the first positive viral PCR with sensitivity 0.4 (0.17-0.69) and specificity 0.95 (0.85-0.98). Our findings strongly support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection, for screening individuals such as contacts of index cases, in order to facilitate early case isolation and early antiviral treatments as they emerge.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.04.20225920

ABSTRACT

Background SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. Methods Health care workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n=12,990) was performed using semi quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to previously reported pseudovirus neutralising antibody measurements. Findings A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r=0.57, p<0.0001) but only anti S1 measurements correlated with near contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r=0.57, p<0.0001). By 21 weeks of follow-up, 31/143 (21.7%) anti S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling suggested faster clearance of anti-S1 compared to anti NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). Interpretation Mild SARS CoV 2 infection is associated with heterogenous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. The application of individual assays for diagnostic and epidemiological serology requires validation in time series analysis.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20211763

ABSTRACT

Studies of adaptive immunity to SARS-CoV-2 include characterisation of lethal, severe and mild cases. Understanding how long immunity lasts in people who have had mild or asymptomatic infection is crucial. Healthcare worker (HCW) cohorts exposed to and infected by SARS-CoV-2 during the early stages of the pandemic are an invaluable resource to study this question. The UK COVIDsortium is a longitudinal, London hospital HCW cohort, followed from the time of UK lockdown; weekly PCR, serology and symptom diaries allowed capture of asymptomatic infection around the time of onset, so duration of immunity could be tracked. Here, we conduct a cross-sectional, case-control, sub-study of 136 HCW at 16-18 weeks after UK lockdown, with 76 having had laboratory-confirmed SARS-CoV-2 mild or asymptomatic infection. Neutralising antibodies (nAb) were present in 90% of infected HCW sampled after the first wave; titres, likely to correlate with functional protection, were present in 66% at 16-18 weeks. T cell responses tended to be lower in asymptomatic infected HCW than those reporting case-definition symptoms of COVID-19, while nAb titres were maintained irrespective of symptoms. T cell and antibody responses were discordant. HCW lacking nAb also showed undetectable T cells to Spike protein but had T cells of other specificities. Our findings suggest that the majority of HCW with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multi-specific T cell responses for at least 4 months after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
COVID-19 , Agricultural Workers' Diseases
SELECTION OF CITATIONS
SEARCH DETAIL